A Passive Mechanism for Goal-Directed Navigation using Grid Cells

نویسنده

  • Vegard Edvardsen
چکیده

As more is becoming understood about how the brain represents and computes with high-level spatial information, the prospect of constructing biologically-inspired robot controllers using these spatial representations has become apparent. Grid cells are particularly interesting in this regard, as they provide a general coordinate system of space. Artificial neural network models of grid cells show the ability to perform path integration, but important for a robot is also the ability to calculate the direction from the current location, as indicated by the path integrator, to a remembered goal. Present models for goal-directed navigation using grid cells have used a simulating approach, where the networks are required to actively test successive locations along linear trajectories emanating from the current location. This paper presents a passive model, where differences between multiscale grid cell representations of the present location and the goal are used to calculate a goal-direction signal directly. The model successfully guides a simulated agent to its goal, showing promise for implementing the system on a real robot in the future. Some possible implications for neuroscientific studies on the goal-direction signal in the entorhinal/subicular region are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A goal-directed spatial navigation model using forward trajectory planning based on grid cells.

A goal-directed navigation model is proposed based on forward linear look-ahead probe of trajectories in a network of head direction cells, grid cells, place cells and prefrontal cortex (PFC) cells. The model allows selection of new goal-directed trajectories. In a novel environment, the virtual rat incrementally creates a map composed of place cells and PFC cells by random exploration. After e...

متن کامل

A biologically inspired hierarchical goal directed navigation model.

We propose an extended version of our previous goal directed navigation model based on forward planning of trajectories in a network of head direction cells, persistent spiking cells, grid cells, and place cells. In our original work the animat incrementally creates a place cell map by random exploration of a novel environment. After the exploration phase, the animat decides on its next movemen...

متن کامل

A hierarchical model of goal directed navigation selects trajectories in a visual environment.

We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model's flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual ...

متن کامل

Modelling effects on grid cells of sensory input during self-motion.

The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firin...

متن کامل

مدل شبکه ی عصبی از نگاشت سلول‌های شبکه به سلول‌های مکانی

Abstract: Medial entorhinal cortex is known to be the hub of a brain system for navigation and spatial representation. These cells increase firing frequency at multiple regions in the environment, arranged in regular triangular grids. Each cell has some properties including spacing, orientation, and phase shift of the nodes of its grid. Entorhinal cortex is commonly perceived to be the major in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015